MPipeMoE: Memory Efficient MoE for Pre-trained
Models with Adaptive Pipeline Parallelism

Zheng Zhang
School of Computer Science
WuHan University
zzhang3031 @whu.edu.cn

Donglin Yang
Nvidia Corp.
dongliny @nvidia.com

Dacheng Tao
JD Explore Academy
JD.com Inc.
dacheng.tao@gmail.com

Abstract—Recently, Mixture-of-Experts (MoE) has become one
of the most popular techniques to scale pre-trained models
to extraordinarily large sizes. Dynamic activation of experts
allows for conditional computation, increasing the number of
parameters of neural networks, which is critical for absorbing the
vast amounts of knowledge available in many deep learning areas.
However, despite the existing system and algorithm optimizations,
there are significant challenges to be tackled when it comes to
the inefficiencies of communication and memory consumption.

In this paper, we present the design and implementation of
MPipeMoE, a high-performance library that accelerates MoE
training with adaptive and memory-efficient pipeline parallelism.
Inspired by that the MoE training procedure can be divided
into multiple independent sub-stages, we design adaptive pipeline
parallelism with an online algorithm to configure the granularity
of the pipelining. Further, we analyze the memory footprint
breakdown of MoE training and identify that activations and
temporary buffers are the primary contributors to the over-
all memory footprint. Toward memory efficiency, we propose
memory reusing strategies to reduce memory requirements by
eliminating memory redundancies, and develop an adaptive
selection component to determine the optimal strategy that
considers both hardware capacities and model characteristics at
runtime. We implement MPipeMoE upon PyTorch and evaluate
it with common MoE models in a physical cluster consisting of
8 NVIDIA DGX A100 servers. Compared with the state-of-art
approach, MPipeMoE achieves up to 2.8 x speedup and reduces
memory footprint by up to 47% in training large models.

Index Terms—Mixture of Experts, Pipeline Parallelism, Dis-
tributed Training, Memory Efficiency

I. INTRODUCTION

Scaling up the model size of neural networks is one of
the promising ways to improving model accuracy in a wide
range of applications [1]-[6]. For example, in natural language
processing (NLP), large pre-trained language models [7]-[10]
have been shown effective in many domains such as language
understanding [9], sequence generating [11], [12] and cross-
lingual downstream transfer [13], [14]. Recently, Mixture-of-
Experts (MoE) has been adopted to scale neural networks to
an extreme size without introducing a proportional increase in
computational cost [15]-[18]. The MoE architecture consists

Xiaobo Zhou
University of Macau
waynexzhou@um.edu.mo

Yaqi Xia Liang Ding
School of Computer Science JD Explore Academy
WuHan University JD.com Inc.

yaqixia@whu.edu.cn liangding.liam @ gmail.com
Dazhao Cheng
School of Computer Science
WuHan University
dcheng @whu.edu.cn

of many sub-models called experts. It employs a trainable
gating network to intelligently forward the input token to
specific experts. The sparse combination of experts makes
it practical to save much computation capacity and improve
model accuracy compared to dense models with the same
computation resources. There are popular MoE-based models
in recent years such as Google’s Switch Transformer [17] and
Meta’s BASE Layer [19].

For training a MoE model, different experts are distributed
across a large number of GPU servers. The training process
requires All-to-All communication primitive operations to
dispatch tokens to the desired experts and collect them after
processing. This procedure is called expert parallelism [17],
which is shown in Figure 1. In a distributed fashion, the
main performance bottleneck comes from the communication
phase. It is reported in literature [20] that a variant of MoE
without All-to-All can achieve a relative improvement of
communication cost for more than 90% in extreme cases.
Besides, when scaling up model at extra-scale, the limited size
of GPU DRAM has been a major challenge for researchers to
explore deeper and wider neural networks.

Training a giant MoE model at the trillion scale requires
tremendous hardware resources. For example, training a model
consisting of 600 billion parameters in GShard [16] takes
up to 96 hours on a cluster equipped with 2,048 TPUs.
There are system and algorithm optimizations that tackle the
intrinsic inefficiency of All-to-All synchronous communica-
tion in MoE [16], [20]-[22]. For example, the work [20]
proposed a gating dropout algorithm to reduce the traffic
of communication. Recently, FasterMoE [22] adopts pipeline
parallelism to alleviate the overhead of communication with
expert shadowing. It can achieve significant speedup upon
the existing systems in training large MoE models. However,
the granularity of pipelining is pre-defined and it is fixed
throughout the training. In practice, the dynamic nature of
communication demands for adaptive pipeline parallelism, be-
cause coarse-grained pipelining is sub-optimal in taking advan-
tage of parallelism while very fine-grained pipelining incurs

significant overhead because of frequent kernel launches and
GPU under-utilization. Furthermore, the existing approaches
ignore memory efficiency in MoE training, which is however
key to scaling up the model to extra-scale.

In this paper, we propose to address the inefficiency of
communication and memory usage of MoE training in a
holistic manner. First, to alleviate the overhead of commu-
nication, we analyze the system behaviors of communication
and computation for the MoE architecture and design adaptive
pipeline parallelism for MoE [23], which partitions a batch of
tokens into several micro-batches and overlaps the execution
of computation and communication. Different from Faster-
MoE [22], we partition tokens in a more effective manner
and propose an adaptive configuration algorithm to search for
the optimal pipeline granularity.

Furthermore, we examine the memory footprint of MoE
training, which mainly comes from three components: i) model
states of experts, which include parameters, optimizer states
and gradients; ii) activations, which need to be stored/stashed
in the forward pass so that they can be used later in the back-
ward pass; iii) temporary buffers, which store the gradients of
activations during the backward pass that are discarded as soon
as they are used. Among the three components, activations
are the primary contributor to the memory footprint when
the batch size is increased. As shown in Figure 1, expert
parallelism [17] is designed to scale up the model size by
distributing experts across devices evenly. Similarly to Zero
Redundancy Optimizer [24], [25], it partitions parameters,
optimizer states, and gradients of the model across devices,
alleviating the memory footprint of model states in MoE.
However, the memory footprints of activations and temporary
buffers have the potential for further reduction.

We propose to reduce the memory footprint of activa-
tions and temporary buffers by sharing the same buffer for
different partitions of tensors. Specifically, the memory of
tensors Tpr,Ths, Tpo can be vastly reduced from m to %,
in which m refers to the memory requirement and n is
the number of partitions that determines the granularity of
pipelining. But a new challenge is introduced, as activations
are overwritten when different partitions request the same
memory address. To deal with this problem, we resort to re-
computation/communication [26] and CPU offloading [27],
[28] for recovering activations in the backward pass. When
the re-computation is enabled, the cost of computation can be
overlapped with that of the communication, and vice versa. In
addition, leveraging that modern GPUs support overlapping
computations and data transfers over PCle, we can offload
data to the CPU in the forward pass and prefetch the data into
GPUs accordingly. Specifically, Tp; can be obtained by either
communication or CPU offloading while T, can be obtained
by either re-computation or CPU offloading. We establish a
performance model to configure the ideal strategy at runtime.

In summary, we make the following contributions.

o We design adaptive pipeline parallelism for MoE by par-

titioning a batch of tokens into several micro-batches and
overlapping the execution of computation and communi-

GPUO

GPU1

GPUn

data flow Ty Tpi Tm Tpo To

Fig. 1. The illustration of expert parallelism of MoE and its data flow.
The green circles represent sub-modules of the MoE layer, and the purple
rectangles represent activation tensors of MoE training. For simplicity, We
take T7,Tpr,Ta,Tpo,To at the bottom of the figure as abbreviations of
input, dispatched input, middle, dispatched output, output tensors, which are
in purple color.

cation to improve the utilization of GPUs and network
bandwidth. We present an online search algorithm to
configure the optimal pipeline granularity.

o We analyze the memory footprint breakdown of MoE and
find that activations and temporary buffers are the primary
contributors to the memory footprint. With the pipeline
parallelism, we propose to reduce the memory footprint
of activations and temporary buffers by sharing the same
memory buffer for different partitions.

o We tackle the problem that activations are overwritten
when different partitions request the same memory space.
We leverage re-computation/re-communication and CPU
offloading for recovering activations in the backward pass
based on performance modeling.

e We implement and integrate the proposed techniques
into a library for MoE training, namely MPipeMOoE.
Experimental results show that MPipeMoE can achieve
up to 47% memory footprint reduction and 2.8 x speedup
over the state-of-the-art system FasterMoE.

The rest of this paper is organized as follows. Section II
gives background and motivations for distributed training of
MoE models. Sections III and IV describe the system design
and implementation of MPipeMoE, respectively. Section V
presents the experimental setup and evaluation results. Sec-
tion VI reviews related works. Section VII concludes the paper.

II. BACKGROUND AND MOTIVATION
A. Mixture of Experts (MoE)

The transformer architecture was introduced to the NLP
community due to its superior performance in sequence-
to-sequence tasks, such as neural machine translation. A
transformer model consists of a few blocks, each of which
is formed by the self-attention, cross-attention, and Feed-
Forward-Network (FFN) modules. Ever since, transformer-
based models become the top performers in various NLP tasks,
such as BERT [7], RoBERTa [8], and GPT-3 [10]. Scaling up
the model size results in a significant increase in computational
cost for both training and inference. For example, it takes 168
days to train a GPT-3 model with 178 billion parameters using
256 NVIDIA A100 GPUs [29].

TABLE I
NOTATIONS USED IN MEMORY USAGE FORMULATION.

Notation ~ Definition Notation Definition
M model dimension B the batch size of tokens
H hidden dimension E the total number of experts
n the number of partitions N the number of nodes

MoE provides an efficient solution to reducing the cost of
training extra-scale models, which incurs only sub-linear com-
pute costs concerning the model size by sparsely activating a
subset of the model parameters for given inputs. For example,
the cost of training the Switch Transformer [17] with 1.6
trillion parameters are indeed less than the computation budget
required to train a dense model with 10 billion parameters. The
core component of these MoE models [15], [17], [25] is the
MoE layer, which replaces the FFN sub-layer in the original
dense transformers.

Expert Parallelism for MoE. To train a giant MoE model,
expert parallelism [17] is widely applied to reduce the memory
footprint by distributing different experts across devices. As
shown in Figure 1, a gating network determines the destination
device of each token, which is followed by All-to-All com-
munication. After the dispatch All-to-All, each device executes
the local expert, which is an FEN layer consisting of two linear
layers and one activation function. Then, the second All-to-All
communication is conducted to send the processed tokens back
to the devices to which these tokens belong.

Inefficient Synchronous Communication. Each expert
requires All-to-All communication to send/receive tokens
to/from other devices. The communication phase becomes one
of the most time-consuming factors in training MoE mod-
els [20], [22]. The All-to-All and expert process procedures
are synchronous operations, which are blocked for waiting for
the desired data.

B. Memory Footprint of MoE

1) Where did all the memory go: We first analyze the full
spectrum of the memory footprint, including model states,
activations, and temporary buffers.

Model States. Model states are one of the main contribu-
tors to memory consumption during training, which includes
parameters, gradients, and optimizer states [24].

Activations. Activations are the intermediate tensors in
forward computing, accounting for a significant amount of
memory usage [26], especially for the large batch size.

Temporary Buffers. Temporary buffers are used to store
intermediate results for a very short period, which are not
required for future computation, i.e., the backward pass.

2) Formulation of Memory Footprint of MoE: To analyze
the memory footprint of MoE, we demonstrate the detailed
dataflow of the communication and expert computation, which
is shown in Figure 1. Starting with the input tensor 77, the
All-to-All stage slices and dispatches the tensor across devices,
which is referred to as Tpy. Every expert takes Tp; as the
input and outputs tensors 7T, and Tpo after two linear layers,

B model states
GPU utilization

activations B temporary buffer

100%

o
©

80%

60%

GPU utilization

o
>

40%

memory proportion
54
o

o
)

20%

0%

GPT-XL BERT-L

Fig. 2. Breakdown of memory footprint ratio within model states, activations,
and temporary buffers. The experiments are conducted on three different
MOoE layers with various batch sizes of tokens ranging from 256 to 16k with
exponential factor 2.

i.e., FFNs, in sequence. The activation function is omitted
since in-place operations can be applied here. Finally, tensor
To is obtained by the collective operations on slices of Tpo.

The memory footprint of model states, activation, and
temporary buffers are denoted as M,,s, Maee, and Myyy,
respectively. We summarize other notations in Table I. The
structure of an MoE layer consists of a gating network and
an expert. As formulated in Equation (1), E x M equals the
number of parameters in the gating network and 2 x H « M
equals that of an expert. Besides, Adam [30] is chosen as the
default optimizer, requiring an additional memory footprint
for momentum and variance. As a result, it takes 4 times
the memory of parameters for storing model states, including
parameters, gradients, momentum, and variance.

The memory footprint of activations is summarized in
Equation 2, where the shape of tensors T7,Tp;, Tpo, To i
(B, M) and the shape of tensor Ty is (B, H). For simplicity,
we do not consider small tensors such as the routing data of
the gating network, because their sizes are one to two orders
of magnitude smaller than other activation tensors.

In the backward pass, the GPU device is required to
allocate temporary buffers to store the gradients of activations
which will be discarded as soon as they are used. When
operations are executed in sequence, only two adjacent tensors
are required to be cached in the device. The formulation of
memory footprint is presented in Equation 3, which is the peak
requirement of temporary buffers.

Mps =4x(Ex M+ 2% H x M) (1)
Myt =4% B+ M+ B+ H)
MbufZB*M—FB*H 3)

To visualize the memory consumption of the three discussed
data types, we plot the ratio of memory footprint in different
MoE settings, which are shown in Figure 2. It can be seen
that activations and temporary buffers account for the major
portions of the memory footprint with the increasing number
of tokens. We also monitor the GPU utilization for the
experiment. We observe that a small batch size leads to GPU
under-utilization, especially for the MoE layer in GPT-S. As a

1.0
0.9

-0.8

< : : : -0.7

] .
comm comp mem all

Fig. 3. The interference between different operations. The values in the grid
represent the relative speed influenced by operations GeMM computation,
communication and memory copy.

result, it is necessary to increase the batch size for higher GPU
utilization. Based on the above observations, we motivate the
need to reduce the memory footprint of activation tensors and
temporary buffers to train the model with the large batch size.

C. Feasibility of Parallelism

The speed of the communication, computation, and memory
copy is denoted as Weomp, Weomm, and Wi,em,, respectively.
Ideally, three types of operations do not affect each other
when they are being executed in parallel because they request
individual hardware resources in principle. However, in a real
environment, there exists resource competition when executing
multiple operations in parallel CUDA streams. For exam-
ple, the communication and memory copy race for memory
bandwidth. Performance slowdown incurs if running multiple
NVIDIA Collective Communication Library (NCCL) kernels
concurrently with computation kernels on the same device.
To quantify the degree of slowdown, we define the actual
speed of communication, computation, and memory copy as
taWeomps 02Weomm, and 1z Wepm, in which iz, 04, and 1,
represent their corresponding slowdown factors, respectively.
The interference stream, i.e., x, can be any type of streams
such as comm, comp, and mem. Specifically, all is regarded
as the case that all three types of CUDA streams are executed
in parallel. The values of p, o, and 7 indicate the feasibility of
parallelism. For example, to take the advantage of overlapping
between communication and computation, ftcomm and Geomyp
are required to be greater than 0.5, otherwise the execution
time of communication or computation would exceed the
original end-to-end time, leading to deterioration of the end-
to-end performance.

To better understand the interference between operations,
we run a micro benchmark in our cluster and measure the ac-
tual speed of communication, computation, and memory copy
in different situations. Results are demonstrated in Figure 3,
from which we can learn that:

e Slowdown is introduced in communication if we execute
computation with communication in parallel. However, it
is feasible to overlap communication and computation as
we can make sure that ficomm, Ocomp are larger than 0.5.

o Computation is slightly influenced by other operations,
which is negligible in terms of end-to-end performance.
As a result, we set ¢ = 1 by default in this paper.

o There exists a performance slowdown when communica-
tion and memory copy streams are executed in parallel,
which is because of bandwidth competition.

The observations and analysis above motivate us to design
adaptive pipeline parallelism with memory efficiency.

III. SYSTEM DESIGN
A. Overview

We present the system design of MPipeMoE. First, we
design adaptive pipeline parallelism and design an online
pipeline granularity configuration algorithm to determine the
optimal granularity for accelerating MoE training. Then, we
propose the memory reusing component and build a perfor-
mance model to select the optimal reusing strategy at runtime
to reduce the memory footprint.

Device 1 F B

Device 2 F | B

Device 1 |F1 F2|F3|F4 B1|B2|B3 B4| Reduced Time |
>,

Device 2 F1|F2|F3 F4|Bl B2|B3(B4| . |

(a) Pipeline parallelism in GPipe.

Comm. 3

Comp. (o3

Reduced Time |
>,

comm. [s1]s2[s3[sa] [ra]re]ra]ra]
c2 | c3 | ca H

Comp. C1

(b) The proposed pipeline parallelism.

Fig. 4. The illustration of GPipe and micro-batch pipeline parallelism in
MPipeMoE. (a) F' and B represent forward pass and backward, respectively.
(b) S, C, and R represent the first All-to-All, computation of experts, and
the second All-to-All. The serial number of every block represents the index
of the micro-batch partition.

B. Micro-batch Pipelining

As stated previously, the All-to-All operation is the perfor-
mance bottleneck to scaling out the training of MoE models.
Pipeline parallelism, which is firstly introduced in GPipe [31],
can reduce the overhead of communication by overlapping
the computation and communication. As is shown in Fig-
ure 4(a), layers of the model are partitioned into multiple
stages, which are mapped to separate devices for performing
computation. To deal with the severe under-utilization caused
by the sequential dependency of the neural network, GPipe
divides the input mini-batch into smaller micro-batches, allow-
ing different accelerators to work on different micro-batches
simultaneously. Inspired by GPipe, the micro-batch parallelism
can also be applied to the MoE layers to achieve end-to-
end speedup. Note that pipeline is not a new idea, enabling
adaptive pipelining for MoE requires online scheduling and
the insight of computation separation because of the complex
dependencies. The unique contribution of this paper lies in
tackling these specific challenges in a holistic manner.

+—B—

u
l[:] Split by N t2l| @G>0 @‘#’@
|7 a6y &) @ &
" 0 6) 03

(a) FasterMoe’s fashion

+—B—

=R

All-to-All x 4

(b) MPipeMoe’s fashion

Fig. 5. Comparison between FasterMoE and our methods.

Micro-batch pipelining for MoE. As shown at the top of
Figure 4(b), only one mini-batch is active for computation or
communication in the traditional expert parallelism. In this
setup, computation and communication are ‘idle’ most time.
With this in mind, we split a mini-batch of tokens into several
micro batches and pipeline their execution one after the other
as shown at the bottom of Figure 4(b). Upon completing
the first All-to-All for a micro-batch, experts asynchronously
execute calculation while simultaneously starting to receive
another mini-batch. Then, the second All-to-All operation
starts as soon as the calculation is finished. Furthermore, there
is no dependency among operations of different partitions.
Thus, we schedule S and R to be executed in the alternative
as shown in Figure 7(a) for the better locality of memory
accesses. The workflow “communication — computation —
communication” is symmetric in the backward pass.

Comparison with FasterMoE in Pipeline Parallelism.
FasterMoE [22] also adopts pipeline parallelism to improve
the efficiency of MoE training. Different from FasterMoE,
we apply a distinguishing method to split the batch data and
propose a new optimization solution for communication. As
shown in Figure 5, the shape of tensor 77 is (IV, B), the
first dimension is the number of devices while the second is
the batch size of tokens. Each row of the tensor is assigned
to the device, which is indicated in a different color in the
figure. There exist two methods for splitting 77 into multiple
partitions. The first method splits 77 along the first dimension.
The All-to-All operation is partitioned into several point-to-
point communications among workers for each partition as
shown in Figure 5(a). The second method splits 77 along
the second dimension as shown in Figure 5(b). The original
All-to-All is split into a few fine-grained ones, each for one
partition. FasterMoE adopts the former method, which has two
disadvantages. First, the All-to-All communication is broken
down into multiple point-to-point communications, making
it infeasible to take advantage of optimizations offered by
NCCL. Second, in the phase of communication, if the network

bandwidth is heterogeneous among workers, the synchroniza-
tion procedure causes a waste of resources for those workers
with higher bandwidth. As a result, MPipeMoE adopts the
latter method for better performance.

Algorithm 1: Adaptive Pipeline Granularity Search

Input: the batch size of tokens B
Output: the number of partitions n
global: S = {} ;
global: cache_table = {} ;
if B in cache_table then
return cache_table[B] ;
end
(Rn,n) = find(S, B) ;
if n == —1 then
n = searchBestGran(B) ;
(Rn,n) = find(S, B) ;
if R,, == @ then
R, = range(B, B) ;
insert(S, (Rn,n)) ;

o 0 N N R W N =

—
N o=

13 else
14 R, =
range(min(B, Bl°v¥e"), maz(B, BUPPeT)) ;
15 end
16 end
17 cache_table[B] =n ;
18 return n;

C. Adaptive Pipelining Granularity Configuration

The effectiveness of pipeline parallelism is largely deter-
mined by the granularity of pipeline, which is determined by
the number of partitions n. A coarse-grained granularity fails
to take the benefit of pipeline because S, C, and R cannot
be fully overlapped. On the other hand, a very fine-grained
granularity could lead to GPU under-utilization. Therefore, it
is necessary to configure for the optimal n at runtime to take
full advantage of pipeline parallelism.

We consider the training process of MoE models, in which
the batch size of tokens is split into n partitions. The micro-
batch size equals B/n. It requires running dozens of itera-
tions to search for the optimal configuration of n by calling
the method searchBestGran(B). Although the cost can be
amortized by epochs, unfortunately, B is dynamic and span a
wide range in MoE training [32]. Thus, it is time consuming
to search for the optimal n for every value of B.

In order to reduce the searching space, we propose Algo-
rithm 1 based on an intuitive hypothesis: n is monotonically
increasing as B increases. As a result, the whole value
domain of B can be a set of disjoint ranges {R,}(R, =
range(Blwer BUPPTY) which is a one-to-one mapping to
n. We denote the set of pairs (n, R,) as S. Given the batch
size of tokens B, the optimal n can be looked up by finding
a pair (n, R,) that satisfies B € R,, in S, which is shown in
line 6. If not found, searchBestGran(B) is called to search

for the optimal configuration n by trials, i.e., lines 7-8. If n is
not in S, a new pair (n, R,, = (B, B)) is inserted into R, i.e.,
lines 9-12. Otherwise, we merge B into range R,,, as shown in
lines 13-14. To eliminate the overhead of find(B) method, we
build a hash table to cache the best strategy for each specific
B, which is illustrated in lines 3-5. We implement the set Rs
based on the binary-search-tree algorithm. The complexity of
find(B) and insert(n, B) are both O(log(n)).

D. Memory Reusing

Memory Space

DI M DO o

Pipeline Timestep
||
||
N

-

Pipeline Timestep

H a‘m mafals
Fig. 6. The illustration of memory reusing. The top figure demonstrates

“memory bubbles” in pipeline parallelism and the bottom one shows the
compressed memory by memory reusing.

Tensors Tpr, Ty, and Tpo are split into n partitions
in pipeline parallelism. Different partitions of tensors are
activated at different times, resulting in “memory bubbles” as
shown at the top of Figure 6. The same operation on different
partitions is pipelined into a single stream and executed in
sequence. We demonstrate that the input or output tensors
of these operations can be shared among partitions to reduce
memory redundancy. For example, the i-th partition of tensor
Ty is activated for computation at time ¢ and the (i+1)-th
partition is activated at time ¢ 4+ 1. Thus we just can allocate
one buffer memory to store partitions of T3, in turn. In this
way, the required memory is reduced from m to “*, where m is
the original memory requirement. Similarly for Tp; and Tpo,
it requires two buffers for communication and computation as
shown at the bottom case of Figure 6.

The memory reusing method is applicable for temporary
buffers. The peak memory requirement of temporary buffers
equals that of activations in pipeline parallelism, thus we
can obtain M} "’ in Equation 4. With memory reusing,
the corresponding reduced memory AMy,; equals AM .y,

which is presented in Equation 5. Finally, we can obtain the

memory saving ratio ¢ as formulated in Equation 6.

MG = MU =B M4 BaH @
AMQC +AMbu
= ! ! (©6)

Mins + MEES + MPEE

After eliminating memory redundancy, tensors 1y, Ths are
overridden by other partitions. However, these tensors are
required for computing the gradients in the backward pass. To
restore tensors 1Tpr, Ths, we consider two methods as follows.

Backward Pass

[s1] [s2[ri[sa[r2[sa][R3] [Ra]

[et | c2 | ca [ca |

Forward Pass

S1 S2|R1[S3|R2|S4|R3

[e

[7d]

[c2 | c3 [ca |

(a) pipeline parallelism

[rRa] [s1] [s2[mi[s3[rz2[sa[r3] [Ra]
|

[s1] [s2[ri1[s3[rz2]sa[Rra]

c1 c2 c3 | ca S c2 c3 c4
H1[H1]H2]H2[H3[H3] Ha[H4 [p1]p1]D2]D2] D3] D3] D4] D4]
(b) S1
[s1] [s2[ri]ss[re[s4[rs] [ma] [s1] [s2][ri[s3|[Rre[sa]|[rs] [R4]
ci c2 c3 c4 | ci [[c2 [] c3 [[ca]
(] [h2] (3] [ha] (2] [p2] [o3] [o4]
(c) S2
[s1] [s2[ri[s3[re[sa][r3] [Ra] [s1]] [s2][[ri[s3[[R2][s4][[R3] [Ra]
[c1 c2 | c3 c4 [c c2 [[c3 || ca
H] [H2] [Hs] [ha (1) (o2 [ps] (o4
(d) S3
[s1] [s2[ri[ss[re[s4[rs] [Rra] [s1]] [s2[[ri[ss[[r2[s4][r3] [ra]
[et [c2] c3 [ca] [et J[e2 [] e3 [[ca]
(e) S4
Fig. 7. The timeline of pipeline parallelism and memory reusing. H, D

represent the host-to-device and device-to-host memory copies, respectively.

o Data offloading. Leveraging the fact that modern GPUs
support overlapping computations and data transfers, we
can swap data back to the CPU while computing. In
the backward pass, data can be prefetched to the GPU
memory in advance.

o Communication and Re-computation. Tensor Tp; can be
transferred again from tensor 77. And Tj; can be re-
computed from Tp;. Ideally, the additional cost of re-
computation can be mitigated if communication is the
bottleneck and vice versa.

As a result, we have four memory reusing strategies, i.e.,
S1, 52, S3, and S4 for MoE training, which are illustrated
in Figure 7(b)-7(e). These strategies distinguish in adopting
different methods to restore Tp; and T in the backward pass.
Because there is no dependency among operations of different
partitions, we schedule S and R in Figure 4(b) to be executed
in an alternative manner for the better locality of memory
accesses. Compared with the timeline of the pipeline without a
memory reusing strategy as shown in Figure 7(a), S1, 52, and
S3 require another CUDA stream to perform memory copy
operations in parallel with computation and communication.
Specifically, device-to-host and host-to-device memory copy

TABLE II
DIFFERENT STRATEGIES FOR MEMORY REUSING

strategy Tpr T 7 n Q fw> Qbw
none - - teomp - [2,2,01,[4,2,0]
S1 offload offload Kall Nall [2,2,51,[4,2,5]
S2 comm. offload Hall Nall [2,2,4],[4,3,4]
S3 offload recompute gy Nall [2,2,11,[5,2,1]
S4 comm. recompute flecomp - [2,2,01,[5,3,0]

operations are involved in the forward pass and the backward
pass, respectively. In S2 and S4, additional communication
operations are introduced to restore T’p; in the backward pass.
Additional computation operations are also required to restore
Ty in S3 and S4.

E. Performance Model on Memory Reusing Strategies

In Section II-C, we validate the feasibility of pipeline
parallelism and denote the speed of computation, commu-
nication, and memory copy as 0zWeomps taWeomm, and
NeWimem, in which z refers to the interference stream. For
simplicity, we define vg = [V0,comp, V0,comm, V0,mem] as the
amount of different type of operations in Equations 7 to 9,
where H, M are defined in Table 1. Specifically, vg, comp and
Vo,comm are the amount of floating-point operations and All-
to-All collective data volumes in MoE, respectively. vg mem
represents the amount of data volumes produced by moving
tensor 1 p; between the device and host. Because H = 4 x M
in most MoE models, copying tensor T); requires four times
more data than that of vg mem.

To quantify the workload on three streams, we define
Q = [q1,42,q3) to represent the actual amount of rela-
tive operations. For instance, if not performing any memory
reusing strategy, i.e., Qg = [2,2,0], there exists two GeMM
operations and two All-to-All operations in the forward pass.
And similarly, we can obtain Q¢,, and Qy,, of four memory
reusing strategies in Table II.

V0,comp = b* H x M (7)
V0,comm = bx M (8)
V0o,mem = bx M (9)

The execution time of a specific stream equals the total
amount of operations divided by the processing speed. For
instance, the computation time is q;”"ﬂ Because different
CUDA streams execute different tasks in parallel, the exe-
cution time of the end-to-end pipeline is determined by the
slowest stream. We formulate the overall execution time Q in
Equation 10, which is determined by Q, u, and 7. Because
the floating-point operations per second are stable as stated in

Section II-C, « and [are nearly constant.

q1Y0,comp 42V0,comm q3”0,mem)

C =mazx ,
(UWcomp ’ /j/Wcomm /J’Wmem

1
~ maz(q1, 20/ p, g3 8/m)

Wcomp (10)
1
W maz(Q - [1,1/p,1/n] - [1,a, B])
comp
W %%
in which o= —"2"2 B = —Lemp
Wcom,m WTYL@H’),

Table II summarizes the characteristics of four strategies,
i.e., pt, 1, Qfw, and Qp,,. We obtain the cost C for all strategies
based on Equation 10, from which the one with the lowest cost
is chosen as the optimal memory reusing strategy. Generally,
strategies S1 and S2 introduce more memory copy operations,
which tend to be I/O bound. In contrast, strategies S3 and S4
tend to be compute-bound.

IV. IMPLEMENTATION

MPipeMoE is an end-to-end MoE training library imple-
mented on top of torch 1.9.0 with CUDA 11.1 '. A few key
components and functionalities are implemented as follows.

A. Gating network and Experts

The gating network routes tokens to experts based on
top-k algorithm. In this paper, we set k to 1. Increasing
k is an equivalence of increasing B in the perspective of
system performance. We implement a feed-forward network
as the default expert, which is applicable for most transformer
models.

B. Expert Parallelism

MPipeMOoE distributes experts across different GPUs using
the expert parallelism while running the remaining parts of
the MoE model in data-parallel scheme. NCCL All-to-All
collective operator is adopted to dispatch and collect tokens
among GPUs.

C. Usability

It is easy for users to benefit from optimizations introduced
by MPipeMoE using Python API, including adaptive pipeline
parallelism and memory reusing, etc. As shown in the fol-
lowing code snippet, adding parameters such as pipeline and
memory_reuse can bring the end-to-end speedup.

import pmoe

moe_layer = pmoe.MoELayer(d_model=1024,
d_hidden=4096, top_k=1,
num_experts=64, pipeline=True,
memory_reuse=True)

Uhttps://github.com/whuzhangzheng/MPipeMoE

TABLE III
SPECIFICATIONS OF MOE LAYERS

Model Name dmodel Qhidden Hexperts
MOoE-GPT3-S 768 3072 64
MoE-GPT3-XL 2048 8192 64
MOoE-BERT-L 1024 4096 64

V. EVALUATION
A. Experimental Setup

1) Physical cluster: Experimental evaluation is performed
on a physical cluster consisting of 8§ NVIDIA DGX A100
servers. Each node is equipped with 8§ NVIDIA A100 SXM
40GB GPUs and 200 Gbps HDR InfiniBand, backed by
96 x 2nd-generation AMD EPYC CPU cores and 1.9 TiB
memory. GPUs are connected by the 3-rd generation NVLink
and NVSwitch within each machine. GPUs across different
machines are connected through a 1,600 Gbps InfiniBand
network with adaptive routing.

2) Models and configurations: The significant discrepancy
of the MoE layer between different models lies in the size of
experts, which is determined by M and H, and the number
of tokens that is denoted as B. Here, we aim to validate the
efficiency of the proposed methods on different expert sizes
as well as batch sizes. We configure the different expert sizes
of FEN from BERT [7] and GPT-3 [10] as shown in Table III,
in which d,;,oqe; refers to the dimension of token embedding
and dp;qden refers to the hidden dimension of FFN layer of
models, respectively. Note that this paper focuses on the MoE
structure and related performance. We create a dummy dataset
by generating random tokens as input to different models. For
all experiments, we adopt Adam [30] as the optimizer. We
evaluate the efficiency of MPipeMoE in terms of the average
training time and the peak memory footprint.

B. Methodology

To demonstrate the performance gain and memory effi-
ciency, we compare MPipeMoE against the state-of-art system
FasterMoE [22], which implements dynamic shadowing and
pipeline parallelism in MoE training. We also choose FastMoE
as another competitor, which implements the primitive expert
parallelism without pipeline parallelism.

We implement MPipeMoE and its variant PipeMoE to
demonstrate the advantages of adaptive pipeline parallelism
and memory efficiency. PipeMoE implements micro-batch size
splitting, which also adopts multi CUDA streams to execute
computation and communication in parallel. MPipeMoE is
implemented on top of PipeMoE, which adopts adaptive
memory reusing strategies to further reduce memory footprint.

C. Overall Speedup

Figure 8 shows the speedup of PipeMoE against FastMoE
and FasterMoE in model training. Compared with FasterMoE,
PipeMoE achieves an average speedup of 2.26x on various
models and batch sizes. Compared with FastMoE, PipeMoE

EZZ FastMoE
XS FasterMoE
[PipeMoE(n=1)
31 E= PipeMoE

it

SKA\" 5@\(\ 506\4\ \,\A\‘\ L\g‘«\ \,\XG\L s 1\\,\”‘

speedup
JJLLLLLLLLLLLU]]]]]]]]]]]]]ILLLLLLLLLLLLLU]
A i
1
(T I

290 Al
AN G e e e

Fig. 8. The speedup of different methods in MoE training with the same model
setting and batch size of tokens B. The format of x-axis is “model_name(B)”.

FastMoE
FasterMoE

[PipeMoE —#— speedup against FastMoE 30

E= MPipeMoE -A- speedup against FasterMdJE
- / 2.5
N N 1 N

15

5
7

o Iy
o =3

o
o

5
N

normalized memory footprint

7 §
RIEY
Lot 506\0 e‘(‘ A9 6((\,\3\‘\

X

o
N
142/

HMIIIIIIIIIIIIIIIIIIIIII\

/

Gl

744

([T

[T

¢, IR

]]]]]]]IM]]]]]]]]]]]I]]]]]]]T_

I AT

E

s kaf,\k\?_(\/_\A\Q

o
o

g‘é\

e ol 3R

Q)
691.5\'* S $L\x

Fig. 9. The memory footprint reduction by MPipeMoE. The bars and the
left y-axis show the ratio of memory footprint compared to FastMoE. The
polyline and the right y-axis show the speedup of MPipeMoE compared to
FastMoE and FasterMoE, respectively.

achieves up to 3.7x speedup. FasterMoE outperforms Fast-
MoE because of pipeline parallelism and overlapping of
computation and communication. PipeMoE can improve the
speedup up to 3.4x against FasterMoE, largely because of the
optimization of the pipeline granularity. PipeMoE also takes
advantage of Tensor Core of GPUs to accelerate computation.

To validate the effectiveness of pipeline parallelism, we
compare PipeMoE against PipeMoE(n=1). In PipeMoE(n=1),
the communication and computation are executed in sequence.
From the result, we can see that the implementation of pipeline
brings benefits to various models with different batch sizes of
tokens. The only exception is GPT-S with batch size B = 4k,
which is not a computation-intensive workload. The result
indicates that the pipeline cannot benefit the training process
that is not compute-bound because the additional kernel launch
overhead leads to lower GPU utilization.

D. Memory Footprint Reduction

Figure 9 presents the overall memory footprint of the
approaches, where the left y-axis represents the memory
footprint normalized to that of FastMoE. The result shows
that MPipeMoE reduces the memory footprint by an average
of 23% and up to 40% compared to FastMoE while still can
achieve 3.1x speedup in terms of training time. FasterMoE

o
o

memory saving ratio
o

o
[N

IS

theoretical
achieved

"
\

N

2

~

N

<7

Fig. 10. The MPipeMoE achieved memory reduction ratios compared to
their theoretical results on three model settings with the varying number of
partitions n (2,4,8) and batch sizes (ranging from 4k to 32k).

Y -¥- FastMoE
‘% FasterMoE
8 i -@- PipeMoE(n=4)
L i -%- PipeMoE
n . -@- MPipeMoE
Es 4
v \
£)
=
24
c
o
5
2
&
®
0
0 500 1000 1500 2000

memory footprint (MB)

Fig. 11. Overall performance breakdown of MPipeMoE on GPT-XL model.

requires more memory than FastMoE because of the dynamic
shadowing and smart scheduling. As a result, MPipeMoE
achieves an average memory reduction of 27% and up to 47%
compared with FasterMoE. Meanwhile, MpipeMoE achieves
a speedup up to 2.8 in terms of the training time.

In Section III-D, Equation 6 provides the theoretical bound
of memory saving of MPipeMoE. To demonstrate the ef-
fectiveness of the analysis, we report the actually achieved
memory saving ratio with the bound, which is depicted in
Figure 10. We conduct experiments on three models. We
configure the number of partitions n and the batch size of
tokens B to different values to validate a wide range of cases.
MPipeMoE achieves about 95% of the theoretical bound. Note
that tensors with small sizes such as routing data produced by
gating networks are not considered.

E. Performance Breakdown

To better understand the performance breakdown of
MPipeMoE, we reveal the performance of the different meth-
ods in memory-time coordinates, in which the x-axis represents
the memory footprint and the y-axis represents the training
time. As shown in Figure 11, the one closer to the origin
point illustrates better overall performance. MPipeMoE signif-
icantly outperforms FasterMoE and FastMoE. PipeMoE(n=4)
reduces the training time because of a higher GPU throughput.
PipeMoE outperforms PipeMoE(n=4) by configuring the opti-
mal pipeline granularity at runtime. MPipeMoE achieves best
memory efficiency by reusing memory partitions. The higher
GPU utilization makes it possible to increase the batch size
with the limited device memory space.

/- n=4 - n=8 === MPipeMoE

S
}
-
N\
D
4
N
~
7
7
N
N
\
3

s SEREERER. -
o

55 61 D 00Nl 4h54041 4819790939 3451996711890 20 %)
B(k)

Fig. 12. The effects of pipeline parallelism on various pipeline granularity.
The dashed line represents the adaptive granularity selected by the configu-
ration algorithm. The x-axis represents various B values.

25

N
o

-
v

overhead(%)
=
o

2221

\\\\)\\\\\ AN}

22227

1

,%\4\07_ I\f’\d\@& .A“\@A 'B\Q\GD‘ X6\Q

16¥) iy

RN a6 @ 3t

Fig. 13. The overhead of memory reusing strategies and the effectiveness of
the strategy selection method in MPipeMoE. The ticks of the x-axis represent
different numbers of GPUs N and the batch size of tokens B in format
(N, B).

F. Effectiveness of Granularity Configurations

We illustrate the effectiveness of the adaptive pipeline
granularity configuration of MPipeMoE, which is based on a
hypothesis that n is monotonically increasing as B increases.
We compare the performance due to different pipeline gran-
ularity with various batch sizes of tokens on model GPT-XL.
Figure 12 shows that when the batch size is smaller than 8k,
n = 2 is the best option. When the batch size is increased
to 8k-22k, n = 4 ensures the best performance. n = 8 is
the optimal configuration if the batch size is larger than 22k.
MPipeMoE, which is denoted as a dashed line, performs the
best in all situations. The results validate its effectiveness.

G. Overhead of Memory Reusing

In terms of speedup, MpipeMoE is indeed second to
PipeMoE because MpipeMoE achieves memory efficiency at
the same time, which however incurs non-trivial overhead.
MpipeMoE features four memory reusing strategies, i.e., S1,
S2, S3, and S4 defined in Table II, which resort to re-
computation/communication and CPU offloading to restore ac-
tivation tensors in the backward pass. For overhead analysis of
the strategies, we conduct experiments with different numbers
of GPUs N and various batch sizes of tokens B. Figure 13
presents the results, from which we can observe that:

e S1 and S2 perform better when NV is small, e.g., 8, but
worse with a larger N, e.g., 64. S1 and S2 introduce
additional memory copy operations while S2 introduces
additional communication operations. With the increasing
number of workers, the cost of communication also
increases, which results in the worse performance for S2
due to the competition on the memory bandwidth between
memory copy and communication.

o Both S3 and S4 introduce additional computational costs,
which perform worse if the workload is computation-
bound, i.e., N = 8.

o 5S4 performs better than S2 if N equals 32 or 64, in which
communication is the bottleneck because memory copy
over PCle in S2 slows down communication operations.

o There is not much performance variation with the varying
batch sizes, indicating that the batch size is not sensitive
to the configuration of strategy.

Based on these observations, we can conclude that there
does not exist a single memory reusing strategy which can
ensure the best performance under all situations. MPipeMoE
builds a performance model based on Equation 10 to decide
the optimal strategy considering both the hardware configura-
tions and runtime characteristics.

VI. RELATED WORK

Mixture-of-Experts (MoE). Several techniques have been
proposed to improve the training efficiency of MoE mod-
els. Gating Dropout [20] allows tokens to ignore the gating
network and keeps the input at the local machines, reduc-
ing the cross-machine communication. DeepSpeed MoE [21]
proposes the hierarchical All-to-All and implements custom
CUDA kernels to scale expert parallelism out to many de-
vices as the latency increases linearly with the increase in
devices. FasterMoE [22] designs a congestion-avoiding expert
selection strategy that relieves network congestion to achieve
lower training latency. Z-code multilingual Multitask MoE
model [25] proposes the Zero Redundancy Optimizer to reduce
memory footprint.

Data, Model, Pipeline, and Expert Parallelism. Paral-
lelization is a key strategy for training large models at scale.
For a model that fits in the device memory for training, data
parallelism (DP) is used to scale training out to multiple
devices. In DP, model parameters are replicated on each
device. At each step, mini-batch data is divided evenly across
all the data parallel processes, such that each process executes
the forward pass and backward pass on a different subset of
data samples, and uses averaged gradients across processes to
update the model locally. To support training giant models,
model parallelism (MP) [33], [34] and pipeline parallelism
(PP) [33], Pipedream [35] splits the model among processes
in either vertical or horizontal ways. Expert parallelism [17] is
another form of model parallelism targeting expert parameters
of MoE models. In expert parallelism, different experts are
placed on different devices and executed in parallel. When
experts reside on different GPU devices, explicit communica-
tion using the All-to-All primitive is required.

VII. CONCLUSION

MoE is a promising technology to improving model qual-
ity by scaling the neural network to an extra-scale. In this
paper, we consider high performance and memory efficiency
of MoE model training in a holistic manner. Toward this
end, we design adaptive pipeline parallelism with online
granularity configuration. Second, we analyze the memory
footprint breakdown of MoE training and propose efficient
memory reusing strategies to reduce memory requirements by
eliminating memory redundancies. What is more, we develop
an adaptive selection component to decide whether to offload
or recompute the required tensors, which considers both the
hardware capacities and model characteristics at runtime.
We implement and integrate these features into MPipeMoE
library and perform extensive evaluations. The results show
that MPipeMoE achieves 2.8 x speedup and reduces memory
footprint by up to 47% compared to FasterMoE.

ACKNOWLEDGMENT

Dazhao Cheng is the corresponding author. The project is
supported by the Special Fund of Hubei Luojia Laboratory.

We promise that we have not used any Al generation tools
in our paper.

REFERENCES

[1]1 S. Arora, N. Cohen, and E. Hazan, “On the optimization of deep
networks: Implicit acceleration by overparameterization,” in Proc. of
ICML, 2018.

[2] D. Mahajan, R. Girshick, V. Ramanathan, K. He, M. Paluri, Y. Li,
A. Bharambe, and L. Van Der Maaten, “Exploring the limits of weakly
supervised pretraining,” in Proc. of ECCV, 2018, pp. 181-196.

[3] W. Xiao, S. Ren, Y. Li, Y. Zhang, P. Hou, Z. Li, Y. Feng, W. Lin, and
Y. Jia, “Antman: Dynamic scaling on gpu clusters for deep learning,” in
Proc. of USENIX OSDI, 2020, pp. 533-548.

[4] X. Jia, L. Jiang, A. Wang, W. Xiao, Z. Shi, J. Zhang, X. Li, L. Chen,
Y. Li, Z. Zheng et al., “Whale: Efficient giant model training over
heterogeneous gpus,” in USENIX Annual Technical Conference, 2022,
pp- 673-688.

[5]1 S. Singh and A. Bhatele, “Axonn: An asynchronous, message-driven
parallel framework for extreme-scale deep learning,” in Proc. of IEEE
IPDPS, 2022, pp. 606-616.

[6] S. Wang, O. J. Gonzalez, X. Zhou, T. Williams, B. D. Friedman,
M. Havemann, and T. Woo, “An efficient and non-intrusive gpu schedul-
ing framework for deep learning training systems,” in Proc. IEEE/ACM
SC, 2020.

[7]1 J. D. M.-W. C. Kenton and L. K. Toutanova, “Bert: Pre-training of deep
bidirectional transformers for language understanding,” in Proceedings
of NAACL-HLT, 2019, pp. 4171-4186.

[8] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.

[9] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,

Y. Zhou, W. Li, P. J. Liu et al., “Exploring the limits of transfer learning

with a unified text-to-text transformer.” J. Mach. Learn. Res., vol. 21,

no. 140, pp. 1-67, 2020.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,

A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod-

els are few-shot learners,” Advances in neural information processing

systems, vol. 33, pp. 1877-1901, 2020.

Z. Zhang, L. Ding, D. Cheng, X. Liu, M. Zhang, and D. Tao, “Bliss:

Robust sequence-to-sequence learning via self-supervised input repre-

sentation,” arXiv preprint arXiv:2204.07837, 2022.

Q. Zhong, L. Ding, J. Liu, B. Du, and D. Tao, “E2s2: Encoding-

enhanced sequence-to-sequence pretraining for language understanding

and generation,” arXiv preprint arXiv:2205.14912, 2022.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

[32]

[33]

[34]

A. Conneau, K. Khandelwal, N. Goyal, V. Chaudhary, G. Wenzek,
F. Guzmadn, E. Grave, M. Ott, L. Zettlemoyer, and V. Stoyanov, “Unsu-
pervised cross-lingual representation learning at scale,” in Proc. of ACL,
2020.

Q. Zhong, L. Ding, Y. Zhan, Y. Qiao, Y. Wen, L. Shen, J. Liu, B. Yu,
B. Du, Y. Chen et al., “Toward efficient language model pretraining and
downstream adaptation via self-evolution: A case study on superglue,”
arXiv preprint arXiv:2212.01853, 2022.

N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton,
and J. Dean, “Outrageously large neural networks: The sparsely-gated
mixture-of-experts layer,” arXiv preprint arXiv:1701.06538, 2017.

D. Lepikhin, H. Lee, Y. Xu, D. Chen, O. Firat, Y. Huang, M. Krikun,
N. Shazeer, and Z. Chen, “Gshard: Scaling giant models with conditional
computation and automatic sharding,” arXiv preprint arXiv:2006.16668,
2020.

W. Fedus, B. Zoph, and N. Shazeer, “Switch transformers: Scaling to
trillion parameter models with simple and efficient sparsity,” 2021.

S. He, L. Ding, D. Dong, B. Liu, F. Yu, and D. Tao, “Cherry hypothesis:
Identifying the cherry on the cake for dynamic networks,” arXiv preprint
arXiv:2211.05528, 2022.

M. Lewis, S. Bhosale, T. Dettmers, N. Goyal, and L. Zettlemoyer, “Base
layers: Simplifying training of large, sparse models,” in Proc. of ICML.
PMLR, 2021, pp. 6265-6274.

R. Liu, Y. J. Kim, A. Muzio, and H. Hassan, “Gating dropout:
Communication-efficient regularization for sparsely activated transform-
ers,” in Proc. of ICML. PMLR, 2022, pp. 13782-13792.

S. Rajbhandari, C. Li, Z. Yao, M. Zhang, R. Y. Aminabadi, A. A. Awan,
J. Rasley, and Y. He, “Deepspeed-moe: Advancing mixture-of-experts
inference and training to power next-generation Al scale,” in Proc. of
ICML, vol. 162, 2022, pp. 18332-18 346.

J. He, J. Zhai, T. Antunes, H. Wang, F. Luo, S. Shi, and Q. Li,
“Fastermoe: modeling and optimizing training of large-scale dynamic
pre-trained models,” in Proc. of ACM PPoPP, 2022, pp. 120-134.

S. Wang, A. Pi, and X. Zhou, “Scalable distributed dl training: Batching
communication and computation,” in Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 2019.

S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He, ‘“Zero: Memory
optimizations toward training trillion parameter models,” in Proc. of
IEEE/ACM SC, 2020, pp. 1-16.

Y. J. Kim, A. A. Awan, A. Muzio, A. F. C. Salinas, L. Lu, A. Hendy,
S. Rajbhandari, Y. He, and H. H. Awadalla, “Scalable and effi-
cient moe training for multitask multilingual models,” arXiv preprint
arXiv:2109.10465, 2021.

T. Chen, B. Xu, C. Zhang, and C. Guestrin, “Training deep nets with
sublinear memory cost,” arXiv preprint arXiv:1604.06174, 2016.

M. Rhu, N. Gimelshein, J. Clemons, A. Zulfigar, and S. W. Keckler,
“vdnn: Virtualized deep neural networks for scalable, memory-efficient
neural network design,” in Proc. of IEEE MICRO, 2016, pp. 1-13.

E. Choukse, M. B. Sullivan, M. O’Connor, M. Erez, J. Pool, D. Nellans,
and S. W. Keckler, “Buddy compression: Enabling larger memory for
deep learning and hpc workloads on gpus,” in Proc. of ACM/IEEE ISCA,
2020, pp. 926-939.

D. Narayanan, M. Shoeybi, J. Casper, P. LeGresley, M. Patwary,
V. Korthikanti, D. Vainbrand, P. Kashinkunti, J. Bernauer, B. Catanzaro
et al., “Efficient large-scale language model training on gpu clusters
using megatron-lm,” in Proc. IEEE/ACM SC, 2021, pp. 1-15.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. of ICLR, 2015.

Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen, M. Chen, H. Lee,
J. Ngiam, Q. V. Le, Y. Wu et al., “Gpipe: Efficient training of giant neu-
ral networks using pipeline parallelism,” Advances in neural information
processing systems, vol. 32, 2019.

C. Hwang, W. Cui, Y. Xiong, Z. Yang, Z. Liu, H. Hu, Z. Wang, R. Salas,
J. Jose, P. Ram et al., “Tutel: Adaptive mixture-of-experts at scale,” arXiv
preprint arXiv:2206.03382, 2022.

N. Shazeer, Y. Cheng, N. Parmar, D. Tran, A. Vaswani, P. Koanantakool,
P. Hawkins, H. Lee, M. Hong, C. Young et al, “Mesh-tensorflow:
Deep learning for supercomputers,” Advances in neural information
processing systems, vol. 31, 2018.

M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catan-
zaro, “Megatron-lm: Training multi-billion parameter language models
using model parallelism,” arXiv preprint arXiv:1909.08053, 2019.

[35] A. Harlap, D. Narayanan, A. Phanishayee, V. Seshadri, N. Devanur,

G. Ganger, and P. Gibbons, “Pipedream: Fast and efficient pipeline
parallel dnn training,” arXiv preprint arXiv:1806.03377, 2018.

